
cysignals Documentation
Release 1.12.3

Martin Albrecht, Jeroen Demeyer

Apr 19, 2025

CONTENTS

1 Interrupt/Signal Handling 3
1.1 Interrupt handling . 3
1.2 Handling other signals . 8
1.3 Further topics in interrupt/signal handling . 9
1.4 Debugging Python crashes . 10

2 Error handling 11
2.1 Error handling in C libraries . 11

3 Signal-related interfaces for Python code 13

4 Links 15

Index 17

i

ii

cysignals Documentation, Release 1.12.3

This is the documentation for cysignals, a package to deal with interrupts and signal handling in Cython code.

When writing Cython code, special care must be taken to ensure that the code can be interrupted with CTRL-C. Since
Cython optimizes for speed, Cython normally does not check for interrupts. For example, code like the following
cannot be interrupted in Cython:

while True:
pass

While this is running, pressing CTRL-C has no effect. The only way out is to kill the Python process. On certain
systems, you can still quit Python by typing CTRL-\ (sending a Quit signal) instead of CTRL-C. The package cysignals
provides functionality to deal with this, see Interrupt handling.

Besides this, cysignals also provides Python functions/classes to deal with signals. These are not directly related
to interrupts in Cython, but provide some supporting functionality beyond what Python provides, see Signal-related
interfaces for Python code.

CONTENTS 1

http://cython.org/

cysignals Documentation, Release 1.12.3

2 CONTENTS

CHAPTER

ONE

INTERRUPT/SIGNAL HANDLING

Dealing with interrupts and other signals using sig_check and sig_on:

1.1 Interrupt handling
cysignals provides two related mechanisms to deal with interrupts:

• Use sig_check() if you are writing mixed Cython/Python code. Typically this is code with (nested) loops where
every individual statement takes little time.

• Use sig_on() and sig_off() if you are calling external C libraries or inside pure Cython code (without any Python
functions) where even an individual statement, like a library call, can take a long time.

The functions sig_check(), sig_on() and sig_off() can be put in all kinds of Cython functions: def, cdef or
cpdef. You cannot put them in pure Python code (files with extension .py).

1.1.1 Basic example
The sig_check() in the loop below ensures that the loop can be interrupted by CTRL-C:

from cysignals.signals cimport sig_check
from libc.math cimport sin

def sine_sum(double x, long count):
cdef double s = 0
for i in range(count):

sig_check()
s += sin(i*x)

return s

See the example directory for this complete working example.

Note

Cython cdef or cpdef functions with a return type (like cdef int myfunc():) need to have an except value to
propagate exceptions. Remember this whenever you write sig_check() or sig_on() inside such a function, other-
wise you will see a message like Exception KeyboardInterrupt: KeyboardInterrupt() in <function
name> ignored.

3

https://github.com/sagemath/cysignals/tree/master/example
http://docs.cython.org/src/userguide/language_basics.html#error-return-values

cysignals Documentation, Release 1.12.3

1.1.2 Using sig_check()
sig_check() can be used to check for pending interrupts. If an interrupt happens during the execution of C or Cython
code, it will be caught by the next sig_check(), the next sig_on() or possibly the next Python statement. With the
latter we mean that certain Python statements also check for interrupts, an example of this is the print statement. The
following loop can be interrupted:

>>> while True:
... print("Hello")

The typical use case for sig_check() is within tight loops doing complicated stuff (mixed Python and Cython code,
potentially raising exceptions). It is reasonably safe to use and gives a lot of control, because in your Cython code, a
KeyboardInterrupt can only be raised during sig_check():

from cysignals.signals cimport sig_check
def sig_check_example():

for x in foo:
(one loop iteration which does not take a long time)
sig_check()

This KeyboardInterrupt is treated like any other Python exception and can be handled as usual:

from cysignals.signals cimport sig_check
def catch_interrupts():

try:
while some_condition():

sig_check()
do_something()

except KeyboardInterrupt:
(handle interrupt)

Of course, you can also put the try/except inside the loop in the example above.

The function sig_check() is an extremely fast inline function which should have no measurable effect on performance.

1.1.3 Using sig_on() and sig_off()
Another mechanism for interrupt handling is the pair of functions sig_on() and sig_off(). It is more powerful
than sig_check() but also a lot more dangerous. You should put sig_on() before and sig_off() after any Cython
code which could potentially take a long time. These two must always be called in pairs, i.e. every sig_on()must be
matched by a closing sig_off().

In practice your function will probably look like:

from cysignals.signals cimport sig_on, sig_off
def sig_example():

(some harmless initialization)
sig_on()
(a long computation here, potentially calling a C library)
sig_off()
(some harmless post-processing)
return something

It is possible to put sig_on() and sig_off() in different functions, provided that sig_off() is called before the
function which calls sig_on() returns. The reason is that sig_on() is implemented using setjmp(), which requires
that the stack frame is kept alive. Therefore, the following code is invalid:

4 Chapter 1. Interrupt/Signal Handling

cysignals Documentation, Release 1.12.3

INVALID code because we return from function foo()
without calling sig_off() first.
cdef foo():

sig_on()

def f1():
foo()
sig_off()

But the following is valid since you cannot call foo interactively:

from cysignals.signals cimport sig_on, sig_off

cdef int foo():
sig_off()
return 2+2

def f1():
sig_on()
return foo()

For clarity however, it is best to avoid this.

A common mistake is to put sig_off() towards the end of a function (before the return) when the function has
multiple return statements. So make sure there is a sig_off() before every return (and also before every raise).

Warning

The code inside sig_on() should be pure C or Cython code. If you call any Python code or manipulate any Python
object (even something trivial like x = []), an interrupt can mess up Python’s internal state. When in doubt, try
to use sig_check() instead.

Also, when an interrupt occurs inside sig_on(), code execution immediately stops without cleaning up. For
example, any memory allocated inside sig_on() is lost. See Signal handling without exceptions for ways to deal
with this.

When the user presses CTRL-C inside sig_on(), execution will jump back to sig_on() (the first one if there is a
stack) and sig_on() will raise KeyboardInterrupt. As with sig_check(), this exception can be handled in the
usual way:

from cysignals.signals cimport sig_on, sig_off
def catch_interrupts():

try:
sig_on() # This must be INSIDE the try
(some long computation)
sig_off()

except KeyboardInterrupt:
(handle interrupt)

It is possible to stack sig_on() and sig_off(). If you do this, the effect is exactly the same as if only the outer
sig_on()/sig_off() was there. The inner ones will just change a reference counter and otherwise do nothing. Make
sure that the number of sig_on() calls equal the number of sig_off() calls:

1.1. Interrupt handling 5

cysignals Documentation, Release 1.12.3

from cysignals.signals cimport sig_on, sig_off

def f1():
sig_on()
x = f2()
sig_off()

cdef f2():
sig_on()
...
sig_off()
return ans

Extra care must be taken with exceptions raised inside sig_on(). The problem is that, if you do not do anything
special, the sig_off() will never be called if there is an exception. If you need to raise an exception yourself, call a
sig_off() before it:

from cysignals.signals cimport sig_on, sig_off
def raising_an_exception():

sig_on()
(some long computation)
if (something_failed):

sig_off()
raise RuntimeError("something failed")

(some more computation)
sig_off()
return something

Alternatively, you can use try/finally which will also catch exceptions raised by subroutines inside the try:

from cysignals.signals cimport sig_on, sig_off
def try_finally_example():

sig_on() # This must be OUTSIDE the try
try:

(some long computation, potentially raising exceptions)
return something

finally:
sig_off()

If you also want to catch this exception, you need a nested try:

from cysignals.signals cimport sig_on, sig_off
def try_finally_and_catch_example():

try:
sig_on()
try:

(some long computation, potentially raising exceptions)
finally:

sig_off()
except Exception:

print("Trouble! Trouble!")

sig_on() is implemented using the C library call setjmp() which takes a very small but still measurable amount of
time. In very time-critical code, one can conditionally call sig_on() and sig_off():

6 Chapter 1. Interrupt/Signal Handling

cysignals Documentation, Release 1.12.3

from cysignals.signals cimport sig_on, sig_off
def conditional_sig_on_example(long n):

if n > 100:
sig_on()

(do something depending on n)
if n > 100:

sig_off()

This should only be needed if both the check (n > 100 in the example) and the code inside the sig_on() block take
very little time.

1.1.4 Using custom blocking and signal handlers
The following illustrates how signals can be held back similar to sig_block and sig_unblock. The number theory
libary PARI/GP defines a variable, which indicates that the execution should not currently be interrupted. Another
variable is used to indicate a pending signal, so that PARI/GP can treat it.

Other external libraries might use a similar scheme. Here we indicate this might work:

from cysignals.signals cimport sig_on, sig_off, add_custom_signals

cdef extern from "stdio.h":
void sleep(int)

cdef int SIGINT_block = 0
cdef int SIGINT_pending = 0

cdef int signal_is_blocked():
return SIGINT_block

cdef void signal_unblock():
global SIGINT_block
SIGINT_block = 0

cdef void set_pending_signal(int sig):
global SIGINT_pending
SIGINT_pending = sig

Use the hook provided by cysignals.
add_custom_signals(&signal_is_blocked, &signal_unblock, &set_pending_signal)

def foo(size_t b, int blocked):
global SIGINT_block, SIGINT_pending
sig_on()
SIGINT_block = blocked
for i in range(b):

sleep(1)
if SIGINT_pending:

SIGINT_block = 0
SIGINT_pending = 0
raise KeyboardInterrupt("interrupt was held back")

SIGINT_block = 0
sig_off()
return

1.1. Interrupt handling 7

cysignals Documentation, Release 1.12.3

In the above scenario foo(10, 0) would just wait for 10 seconds, while allowing interrupts. foo(10, 1) blocks the
interrupt until the end of the second. The pending signal is then treated with a custom message.

1.2 Handling other signals
Apart from handling interrupts, sig_on() provides more general signal handling. For example, it handles alarm()
time-outs by raising an AlarmInterrupt (inherited from KeyboardInterrupt) exception.

If the code inside sig_on() would generate a segmentation fault or call the C function abort() (or more gener-
ally, raise any of SIGSEGV, SIGILL, SIGABRT, SIGFPE, SIGBUS), this is caught by the interrupt framework and
an exception is raised (RuntimeError for SIGABRT, FloatingPointError for SIGFPE and the custom exception
SignalError, based on BaseException, otherwise):

from libc.stdlib cimport abort
from cysignals.signals cimport sig_on, sig_off

def abort_example():
sig_on()
abort()
sig_off()

>>> abort_example()
Traceback (most recent call last):
...
RuntimeError: Aborted

This exception can be handled by a try/except block as explained above. A segmentation fault or abort() un-
guarded by sig_on() would simply terminate the Python Interpreter. This applies only to sig_on(), the function
sig_check() only deals with interrupts and alarms.

Instead of sig_on(), there is also a function sig_str(s), which takes a C string s as argument. It behaves the same
as sig_on(), except that the string s will be used as a string for the exception. sig_str(s) should still be closed by
sig_off(). Example Cython code:

from libc.stdlib cimport abort
from cysignals.signals cimport sig_str, sig_off

def abort_example_with_sig_str():
sig_str("custom error message")
abort()
sig_off()

Executing this gives:

>>> abort_example_with_sig_str()
Traceback (most recent call last):
...
RuntimeError: custom error message

With regard to ordinary interrupts (i.e. SIGINT), sig_str(s) behaves the same as sig_on(): a simple
KeyboardInterrupt is raised.

8 Chapter 1. Interrupt/Signal Handling

cysignals Documentation, Release 1.12.3

1.3 Further topics in interrupt/signal handling

1.3.1 Testing interrupts
When writing documentation, one sometimes wants to check that certain code can be interrupted in a clean way. The
best way to do this is to use cysignals.alarm().

The following is an example of a doctest demonstrating that the SageMath function factor() can be interrupted:

>>> from cysignals.alarm import alarm, AlarmInterrupt
>>> try:
... alarm(0.5)
... factor(10**1000 + 3)
... except AlarmInterrupt:
... print("alarm!")
alarm!

If you use the SageMath doctesting framework, you can instead doctest the exception in the usual way (the Python
doctest module exits whenever a KeyboardInterrupt is raised in a doctest). To avoid race conditions, make sure
that the calls to alarm() and the function you want to test are in the same doctest:

>>> alarm(0.5); factor(10**1000 + 3)
Traceback (most recent call last):
...
AlarmInterrupt

1.3.2 Signal handling without exceptions
There are several more specialized functions for dealing with interrupts. As mentioned above, sig_on() makes no
attempt to clean anything up (restore state or freeing memory) when an interrupt occurs. In fact, it would be impossible
for sig_on() to do that. If you want to add some cleanup code, use sig_on_no_except() for this. This function
behaves exactly like sig_on(), except that any exception raised (like KeyboardInterrupt or RuntimeError) is not
yet passed to Python. Essentially, the exception is there, but we prevent Cython from looking for the exception. Then
cython_check_exception() can be used to make Cython look for the exception.

Normally, sig_on_no_except() returns 1. If a signal was caught and an exception raised, sig_on_no_except()
instead returns 0. The following example shows how to use sig_on_no_except():

def no_except_example():
if not sig_on_no_except():

(clean up messed up internal state)

Make Cython realize that there is an exception.
It will look like the exception was actually raised
by cython_check_exception().
cython_check_exception()

(some long computation, messing up internal state of objects)
sig_off()

There is also a function sig_str_no_except(s) which is analogous to sig_str(s).

Note

See the file src/cysignals/tests.pyx for more examples of how to use the various sig_*() functions.

1.3. Further topics in interrupt/signal handling 9

https://github.com/sagemath/cysignals/blob/master/src/cysignals/tests.pyx

cysignals Documentation, Release 1.12.3

1.3.3 Releasing the Global Interpreter Lock (GIL)
All the functions related to interrupt and signal handling do not require the Python GIL (if you don’t know what this
means, you can safely ignore this section), they are declared nogil. This means that they can be used in Cython code
inside with nogil blocks. If sig_on() needs to raise an exception, the GIL is temporarily acquired internally.

If you use C libraries without the GIL and you want to raise an exception before calling sig_error(), remember to
acquire the GIL while raising the exception. Within Cython, you can use a with gil context.

Warning

The GIL should never be released or acquired inside a sig_on() block. If you want to use a with nogil block,
put both sig_on() and sig_off() inside that block. When in doubt, choose to use sig_check() instead, which
is always safe to use.

1.4 Debugging Python crashes
If cysignals is imported, it sets up a hook which triggers when Python crashes. For example, it would be triggered
on a segmentation fault outside a sig_on() block.

When a crash happens, first a simple C backtrace is printed if supported by the C library on the system. Then GDB is
run to print a much more complete backtrace (except on OS X, where running a debugger requires special privileges).
For your convenience, these GDB backtraces are also saved to a logfile.

Finally, this familiar message is shown:

This probably occurred because a *compiled* module has a bug
in it and is not properly wrapped with sig_on(), sig_off().
Python will now terminate.

1.4.1 Environment variables
There are several environment variables which influence this:

CYSIGNALS_CRASH_QUIET

If set, be completely quiet whenever a crash happens. No backtrace or other message is shown and GDB is not
run.

CYSIGNALS_CRASH_NDEBUG

If set, disable the GDB backtrace. The simple backtrace is still shown.

CYSIGNALS_CRASH_LOGS

The directory where the logs of the crashes are stored. If this is empty, disable storing of crash logs. The default
is cysignals_crash_logs in the current directory.

CYSIGNALS_CRASH_DAYS

Automatically delete crash logs older than this many days in the directory where crash logs are stored. A negative
value means that logs are never deleted. The default is 7 days if CYSIGNALS_CRASH_LOGS is unset and -1 days
(never delete) otherwise.

10 Chapter 1. Interrupt/Signal Handling

http://docs.cython.org/src/userguide/external_C_code.html#acquiring-and-releasing-the-gil
http://docs.cython.org/src/userguide/external_C_code.html#acquiring-the-gil

CHAPTER

TWO

ERROR HANDLING

Defining error callbacks for external libraries using sig_error:

2.1 Error handling in C libraries
Some C libraries can produce errors and use some sort of callback mechanism to report errors: an external error
handling function needs to be set up which will be called by the C library if an error occurs.

The function sig_error() can be used to deal with these errors. This function may only be called within a sig_on()
block (otherwise the Python interpreter will crash hard) after raising a Python exception. You need to use the Python/C
API for this and call sig_error() after calling some variant of PyErr_SetObject(). Even within Cython, you
cannot use the raise statement, because then the sig_error() will never be executed. The call to sig_error()
will use the sig_on() machinery such that the exception will be seen by sig_on().

A typical error handler implemented in Cython would look as follows:

from cysignals.signals cimport sig_error
from cpython.exc cimport PyErr_SetString

cdef void error_handler(char *msg):
PyErr_SetString(RuntimeError, msg)
sig_error()

Exceptions which are raised this way can be handled as usual by putting the sig_on() in a try/except block. For
example, the package cypari2 provides a wrapper around the number theory library PARI/GP. The error handler has a
callback which turns errors from PARI/GP into Python exceptions of type PariError. This can be handled as follows:

from cysignals.signals cimport sig_on, sig_off
def handle_pari_error():

try:
sig_on() # This must be INSIDE the try
(call to PARI)
sig_off()

except PariError:
(handle error)

SageMath uses this mechanism for libGAP, GLPK, NTL and PARI.

11

https://github.com/sagemath/cypari2
https://github.com/sagemath/cypari2/blob/master/cypari2/handle_error.pyx

cysignals Documentation, Release 1.12.3

12 Chapter 2. Error handling

CHAPTER

THREE

SIGNAL-RELATED INTERFACES FOR PYTHON CODE

cysignals provides further support for system calls related to signals:

13

cysignals Documentation, Release 1.12.3

14 Chapter 3. Signal-related interfaces for Python code

CHAPTER

FOUR

LINKS

• cysignals on the Python package index: https://pypi.org/project/cysignals/

• cysignals code repository and issue tracker on GitHub: https://github.com/sagemath/cysignals

• cysignals documentation on Read the Docs: https://cysignals.readthedocs.io

15

https://pypi.org/project/cysignals/
https://github.com/sagemath/cysignals
https://cysignals.readthedocs.io

cysignals Documentation, Release 1.12.3

16 Chapter 4. Links

INDEX

E
environment variable

CYSIGNALS_CRASH_DAYS, 10
CYSIGNALS_CRASH_LOGS, 10
CYSIGNALS_CRASH_NDEBUG, 10
CYSIGNALS_CRASH_QUIET, 10

17

	Interrupt/Signal Handling
	Interrupt handling
	Basic example
	Using sig_check()
	Using sig_on() and sig_off()
	Using custom blocking and signal handlers

	Handling other signals
	Further topics in interrupt/signal handling
	Testing interrupts
	Signal handling without exceptions
	Releasing the Global Interpreter Lock (GIL)

	Debugging Python crashes
	Environment variables

	Error handling
	Error handling in C libraries

	Signal-related interfaces for Python code
	Links
	Index

